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PAT Unofficial Solutions 2017

1 Foreword

The solutions provided here are by no means an official set of answers; our aim
was to provide unofficial solutions in order to provide those studying for the
PAT with the means to check their answers as they attempt past paper ques-
tions. There is no mark breakdown but we aimed to provide detailed expla-
nations on how to solve the questions and develop a good intuition for them.
These solutions have been compiled by our team of Oxford Physics graduates
who have all taken the PAT and our team members also have experience in
marking the PAT and/or running the PAT summer programmes coordinated
by the University of Oxford.

Some general tips for questions:

1) Try and keep your calculations in terms of symbols and letters until you see
your calculations simplifying considerably by substituting numbers. This will
genuinely reduce errors in your work and make it way easier for the marker to
understand your thought process.

2) Give your variables reasonable names, for example don’t call your initial
velocity something like vu and final velocity something like vv, as you will def-
initely confuse the life out of everyone looking at your work not to mention
yourself.

3) Your teachers may say this a lot and many of you probably ignore it but
drawing diagrams really helps! Sometimes the best way to deal with para-
graphs of information is a simple drawing which has all the important bits - it
will also save you a lot of time!

4) Always show your working so it does not look like you picked an answer
out of thin air especially for the longer answer questions so it’s easier to pick up
on exactly where you went wrong if you do go wrong. Fair enough you may
have had a moment of next level inspiration but a couple of lines (or words
here and there) just outlining your way of thinking really helps. That said, it
doesn’t have to be an essay!

5) Don’t feel the need to rush, relax yourself and approach the questions. If
you get really stuck on one, don’t get too put off, just skip it and come back to
it later if you get time.
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2 Section A: Multiple Choice Questions

2.1 Answers

1 D
2 A
3 E
4 D
5 B
6 C
7 C
8 E
9 B
10 A
11 B
12 A

Table 1: Multiple Choice Answers.
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2.2 Answers Explained

2.2.1 Qu1: Differentiation

Product Rule:
dy
dx

= u
dv
dx

+ v
du
dx

(1)

for y = uv.

2.2.2 Qu2: Factorisation

Factorise the quadratic. A useful rule is, that for a quadratic of form

Ax2 + Bx + C = 0

to be factorised to
(x + a)(x + b) = 0

we can say that we want a and b such that

a ∗ b = C/A (2)

a + b = B/A (3)

2.2.3 Qu3: Sum of Geometric Series

This is a simple problem as long as you are happy with notation. For those
not familiar with sum notation take a look at this website, it’s nice and clear:
http://www.columbia.edu/itc/sipa/math/summation.html
We have a finite geometric series with first term a = 1 as (−e−1)0 = 1 and also
common ratio r = −e−1. Sum to n terms is given by:

Sn =
a(1− rn)

1− r
(4)

Just substitute your a, r and n=11 (n=10 but we started from n=0 so 10 is the
11th term) and you should get E.

2.2.4 Qu4: Logarithms

To lower indices to solve for x we need to use logs.
Get all a terms on one side and b terms on the other.

a2x+2 = b2x

(2x + 2)log(a) = 2xlog(b)

log(a) = (log(b)− log(a))x

Then the answer is D.
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2.2.5 Qu5: Integrals of Odd and Even Functions

You could integrate these and find out but we know odd functions with sym-
metric limits will give us 0 (the top half of the graph and bottom half cancel as
one is in the positive y axis while the other in the negative) and evens will give
us non-zero values as both halves are either positive or negative so no cancel-
lation.

Odd f unctions : f (−x) = − f (x) (5)

Even f unctions : f (x) = f (−x) (6)

Out of the 4 equations all of the limits are symmetric about the origin. This
means as I1 and I4 are the only two odd functions, they will be the two zero
integrals.

2.2.6 Qu6: Graphing Functions

Key things to notice first:

1) There are 3 asymptotes: x= 1,-3 and y=0

so we’re looking for the denominator to be 0 at these values of x - so C/A

2) The graph goes through (0,-1/3)

still both C and A go through this point

3) Let’s try a random point
when x= -1, A gives y = +1/2
C however gives y = -1/4

We can see that the graph is negative at this point therefore C is correct.

2.2.7 Qu7: Acceleration

C is the only sensible answer seeing as the astronaut only lightly tosses the ball.

2.2.8 Qu8: EM Spectrum

The full list is: Gamma, X-ray, UV, Visible, Infrared, Micro, Radio

This is probably worth learning along with rough ranges of their wavelengths/
frequencies (if you know one you can find the other using the wave equation
c = f λ.

c©PhysOx Initiative 2020 4
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2.2.9 Qu9: Resistance

Resistances in series add:

Rtot = R1 + R2 + ... (7)

Resistances in parallel:

1
Rtot

=
1

R1
+

1
R2

+ ... (8)

So the first parallel bit collapses to a resistor with resistance

1
R1

=
1
R
+

1
2R

R1 =
2R
3

Then the circuit remaining is a series circuit with resistances R1 and R:

Rtot =
2R
3

+ R =
5R
3

From V = IR
I =

3V
5R

This is the current.

2.2.10 Qu10: Capacitance

The key equation to remember here for capacitance is:

C =
ε0 A

d
(9)

for A the plate area, d the distance between parallel plates.
Therefore from proportionality if we half the area we half the capacitance.

2.2.11 Qu11: Pulleys

We need the forces up to balance the forces down (around the mass). So we
have the two segments of rope around the first pulley acting like two equal
forces going up and mg going down. We assume tension in string is the same
(the rope isn’t stretchy) so the force F applied gets double input in the balancing
act (due to the two arms coming out of pulley 1). Therefore mg = 2F so B.

c©PhysOx Initiative 2020 5
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Figure 1: Qu11

2.2.12 Qu12: Charged Particle Motions

We are told the particle comes to a stop after time t so final momentum (and
velocity is 0). This means from Newton II:

F =
∆p
∆t

=
pi
t

Force due to a charged particles:

F = qE =
qV
d

Combining all of that we get A:

p =
qVt

d

c©PhysOx Initiative 2020 6
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3 Section B: Long Answer Questions

3.0.1 Qu13: Binomial Expansion(
n
k

)
= nCk =

n!
k!(n− k)!

(10)

This is the combinations formula! Also worth remembering and making note
of the permutations formula:

nPk =
n!

(n− k)!
(11)

(3 + 2x)5 =

35 + 5C1(3)4(2x)1 + 5C2(3)3(2x)2 + 5C3(3)2(2x)3 + 5C4(3)1(2x)4 + (2x)5 =

243 + 810x + 1080x2 + 720x3 + 240x4 + 32x5

3.0.2 Qu14: Probability

For this question, make sure you’re happy with the way the AND rule works
with probabilities.

Always highlight the relevant equation to organise your thoughts:

Person A - 0.5
Person B - 0.75
Person C - 0.2

a) All three busy: 0.5 ∗ 0.75 ∗ 0.2 = 0.075

b) All three not busy: (1− 0.5) ∗ (1− 0.75) ∗ (1− 0.2) = 0.1

c©PhysOx Initiative 2020 7
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3.0.3 Qu15: Forces and Motion

Spring Constant k, Natural length L, masses m and M, friction coeff µs
To move m we need the force due to the tension in the spring to be greater than
friction (From Newton I we need imbalance of forces). This critical force (when
resistance = to the pulling force) corresponds to a critical extension which we
can find by applying Hooke’s Law.

Note that the force of friction can be found from the coefficient as Ff rm = µsmg
and for the mass M, Ff rM = µs Mg.

Figure 2: Qu15

Now Hooke’s Law gives us:

F = kx (12)

The displacement in M is the extension in the spring and hence is the pulling
force on m. The friction on M doesn’t play a role in the motion of the mass m
as it doesn’t affect the tension. We want the tension = friction due to the small
mass for the critical condition for movement.

kx = µsmg

x =
µsmg

k

c©PhysOx Initiative 2020 8
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3.0.4 Qu16: Cones and Spheres

Define radius of cone to be rcone

Vsphere =
4
3

πr3

Vcone =
1
3

πr2
coneh =

2r
3

πr2
cone

as h = 2r.
Now set Vcone = Vsphere and rearrange for rcone.

rcone =
√

2r

Figure 3: Qu16

c©PhysOx Initiative 2020 9
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3.0.5 Qu17: Forces and Motion

a) The first part is a dimensional analysis question - just look at the units of
everything else and equate.

[αv2] = kgms−2

We know the units of v is ms−1 substituting and equating as above.

[α] =
kgms−2

m2s−2 = kgm−1

b) Terminal velocity occurs when weight = air resistance/drag force up so
the object falling reaches equilibrium and the velocity stops increasing (con-
stant). Identifying the weight term as mg and the resistance term as αv2 in the
equation, we equate them and rearrange to find vterm.

vterm =

√
mg
α

.
c) Key assumptions: terminal velocity isn’t reached before the ground. It is

reached just about as she hits the ground.

Figure 4: Qu17

c©PhysOx Initiative 2020 10
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Energies involved are GPE and KE.

∆GPE = mgh

KE =
1
2

mv2 =
1
2

m2

α

Where we applied b) above.

Air resistance does work to reduce the loss of GPE and reduce the velocity
(or KE) of the object so:

Workdone = mgh− m2g
2α

c©PhysOx Initiative 2020 11
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3.0.6 Qu18: Waves and Interference

a) Angular frequency:
ω = 2π f

Wave equation:
v = f λ

Therefore:
v =

ωλ

2π

b) Consider y1 + y2

ytot = Acos(
2πx
λ1
−ω1t) + Acos(

2πx
λ2
−ω2t) (13)

= 2Acos[
(λ2 + λ1)πx

λ1λ2
− (ω1 + ω2)t

2
]cos[

(λ2 − λ1)πx
λ1λ2

− (ω1 −ω2)t
2

]

(14)

This was simplified using the identity given. This equation has two parts. The
wavenumber k = 2π/λ is the coefficient of x in each part of the wave’s equa-
tion. From the superposed waves, we have a long wavelength term and a short
wavelength term. The long wavelength term is an ”envelope” wave (wave-
length L2) which envelopes shorter oscillations (wavelength L1).

L1 = 2
λ2λ1

λ2 + λ1

L2 = 2
λ2λ1

λ2 − λ1

Figure 5: Qu18
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c) Sound disappears at nodes in the diagram in b). This is half of the long
wavelength:

L2/2 =
λ2λ1

λ2 − λ1

The frequency is that corresponding to the short wavelength oscillations:

f =
v
L1

=
ω1(λ2 + λ1)

4πλ2

c©PhysOx Initiative 2020 13
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3.0.7 Qu19: Parametric Equations

There is more than one way of doing this. For parametric equations you can try
and first get rid of the t-dependent terms by using the identity cos2x + sin2x =
1 and then some rearranging before setting y to 0 and solving for x. However,
with this question it may be quicker to look at the y equation and set it to 0 to
find the condition for the t-dep. term and then apply this to the x equation:

a(
√

3− 2cos(ωt)) = 0

cos(ωt) =
√

3
2

for which solutions are:

ωt =
π

6
+ 2πn,

11π

6
+ 2πn

so that
sin(ωt) = 1/2,−1/2

Substituting into the x parametric equation for the two cases:

x = a(
π

6
+ 2πn− 1

2
)

x = a(
π

6
+ 2πn +

1
2
)

Where n is 0, 1 , 2 , 3, etc.

c©PhysOx Initiative 2020 14
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3.0.8 Qu20: Newton’s Law of Gravitation and Orbits

For the two star system, the stars are opposite each other in the circle (as is
our assumption) therefore from Newton’s Law of Gravitation and Centripetal
Motion (equating the two):

mv2
2

R
=

Gmm
(2R)2

v2
2 =

Gm
4R

Figure 6: Qu20

Similarly for the three-star system this time the separation isn’t 2R but is
2Rcos(30) from geometry. We also have contributions from 2 stars and as cen-
tripetal acceleration is due to the force perpendicular to the velocity of the
object the contribution of the gravitational force that we want to equate to is
Fc f = Fgcos(30):

mv2
3

R
=

Gmm
(2Rcos(30))2 .2.cos(30)

v2
3 =

√
3Gm
3R

c©PhysOx Initiative 2020 15
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Taking a ratio of the two speeds and rearranging for v3:

v3 =
2

30.25 v2

c©PhysOx Initiative 2020 16
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3.0.9 Qu21: Integration and Differentiation

Consider the integration first. In the integral, we see that we are integrating
with respect to dx so t behaves like a constant.

d
dt

t4
∫ 2t2

0
x4dx

d
dt

t4[
x5

5
]2t2

0

Apply the substitution in the square brackets

d
dt
(

32
5

t14)

Finally differentiate what’s inside wrt. t.

=
448

5
t13

c©PhysOx Initiative 2020 17
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3.0.10 Qu22: Circles and Tangents

Figure 7: Qu22

Simplifying the two equations to a more familiar form by completing the square
for both x and y variables:

(x + 3)2 + (y− 2)2 = (
3
2
)2

(x− 5)2 + (y− 1)2 = (
5
2
)2

From a circle theorem if two tangents are drawn to a circle, then they have
equal tangent segments.
This means that p1 − p2 and p3 − p4 are the same length and equally p5 − p6
and p7 − p8 are the same length.
a) From the diagram we find that p1− p2 is a straight line with length 8 (differ-
ence between the centres of the circles). Therefore p3 − p4 is also length 8.

b) From the diagram we seen the similar triangles 1 and 2.
This means that 1.5

A = 2.5
B or B = 5

3 A and the length L = A + B

L =
8
3

A

c©PhysOx Initiative 2020 18
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We also know that the distance between the centres are
√

82 + 12 =
√

65.
From the relation before (similar triangles), A1 = 3

8

√
65.

From Pythagoras, A2 = A2
1 − 1.52 therefore applying to the equation for L

before.
L =

8
3

√
A2

1 − 1.52 = 7

From the circle theorem this is the length between p5 − p6 and p7 − p8. Note:
There are different ways of doing this so chances are if you ended up at the
same answer your method is completely fine even if it looks completely differ-
ent!
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3.0.11 Qu23: Refraction

This is going to be lots of Snell’s Law and triangles.
The ring will appear to stop descending past the critical angle in the right tank.
Condition for that is:

n2 = n1sin(
π

2
− θ1) = n1cos(θ1)

We need all of this in terms of only depths and refractive indices (no angles).
Let’s consider some other relations:
For the air-tank1 boundary:

sin(θ0) = n1sin(θ1)

From the identity sin2(θ) + cos2(θ) = 1 we can rearrange the above two equa-
tions and obtain:

sin2(θ0) = n2
1 − n2

2

Figure 8: Qu23

If we define the apparent depth from the observer as D then from Pythago-
ras we also have:

sin(θ0) =
L√

L2 + D2

c©PhysOx Initiative 2020 20
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In terms of refractive indices, combining the two equations above and rear-
ranging for D:

D2 =
L2(1 + n2

1 − n2
2)

n2
1 − n2

2

Therefore apparent depth from surface = D - h

Dappsr f = L

√
1 + n2

1 − n2
2

n2
1 − n2

2
− h
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